Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis.
نویسندگان
چکیده
The inability of humans to synthesize L-ascorbic acid is known to be due to a lack of L-gulono-gamma-lactone oxidase, an enzyme that is required for the biosynthesis of this vitamin. Isolation of a cDNA for rat L-gulono-gamma-lactone oxidase allowed us to study the basic defect underlying this deficiency at the gene level and led to isolation of a human genomic clone related to L-gulono-gamma-lactone oxidase as well as three overlapping clones covering the entire coding region of the rat L-gulono-gamma-lactone oxidase cDNA. Sequence analysis study indicated that the human L-gulono-gamma-lactone oxidase gene has accumulated a large number of mutations since it stopped being active and that it now exists as a pseudogene in the human genome.
منابع مشابه
The responses of L-gulonolactone oxidase and HKT2;1 genes in Aeluropus littoralis’ shoots under high concentration of sodium chloride
Salinity is one of the most important abiotic stresses that limit crop growth and production. Salt stress influences plants in two ways: by affecting ion toxicity and increasing osmotic stress. Ion homeostasis, the excretion of Na+ and using antioxidant systems are the major strategies of salt tolerance in plants. Na+ and K+ transporters with enzymes that are involved in detoxification of react...
متن کاملEvaluation of gene expression profiling in a mouse model of L-gulonolactone oxidase gene deficiency.
Humans and guinea pigs are species which are unable to synthesize ascorbic acid (vitamin C) because, unlike rodents, they lack the enzyme L-gulonolactone oxidase (Gulo). Although the phenotype of lacking vitamin C in humans, named scurvy, has long been well known, information on the impact of lacking Gulo on the gene expression profiles of different tissues is still missing. This knowledge coul...
متن کاملGulonolactone Addition to Human Hepatocellular Carcinoma Cells with Gene Transfer of Gulonolactone Oxidase Restores Ascorbate Biosynthesis and Reduces Hypoxia Inducible Factor 1
Humans are unable to synthesise ascorbate (Vitamin C) due to the lack of a functional gulonolactone oxidase (Gulo), the enzyme that catalyses the final step in the biosynthesis pathway. Ascorbate is a vital micronutrient required for many biological functions, including as a cofactor for metalloenzymes that regulate the transcription factor hypoxia-inducible factor-1 (HIF-1), which governs cell...
متن کاملFormation of malonaldehyde in vitamin E deficiency and its relation to the inhibition of gulonolactone oxidase.
The impairment of synthesis in vitro of ascorbic acid by liver extracts from animals deprived of vitamin E (1, 2) is due to the inhibition of the enzyme(s) located in the microsomes (3) which catalyzes the oxidation of n-gulonolactone to L-ascorbic acid. This enzyme or enzymic complex will be termed gulonolactone oxidase. Concurrent with the inhibition of gulonolactone oxidase, a material is fo...
متن کاملBody pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus): an agnathan fish with gulonolactone oxidase activity.
Although many vertebrates can synthesize ascorbic acid (vitamin C), it is still unclear from the evolutionary perspective when the ability to synthesize the vitamin first appeared in the animal kingdom and how frequently the trait has been lost. We report here ascorbic acid biosynthesis ability in sea lamprey (Petromyzon marinus) which represent the most ancient vertebrate lineage examined thus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of clinical nutrition
دوره 54 6 Suppl شماره
صفحات -
تاریخ انتشار 1991